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Abstract This paper is concerned with the optimal threshold selection and resource allocation prob-

lems of quantized identification, whose aims are improving identification efficiency under limited re-

sources. Firstly, the first-order asymptotically optimal quantized identification theory is extended to

the weak persistent excitation condition. Secondly, the characteristics of time and space complexities

are established based on the Cramér-Rao lower bound of quantized systems. On these basis, the op-

timal selection methods of fixed thresholds and adaptive thresholds are established under aperiodic

signals, which answer how to achieve the best efficiency of quantized identification under the same time

and space complexity. In addition, based on the principle of maximizing the identification efficiency

under a given resource, the optimal resource allocation methods of quantized identification are given

for the cases of fixed thresholds and adaptive thresholds, respectively, which show how to balance time

and space complexity to realize the best identification efficiency of quantized identification.

Keywords Quantized output, resource allocation, system identification, threshold selection.

1 Introduction

1.1 Background and Motivations

System identification is widely applied in various fields, such as engineering[1–3], signal
processing[4], biomedicine[5, 6], and so on. Classical identification theory focuses on asymp-
totic properties[7–9], such as least square and least mean square algorithms, which requires
sufficiently numerous data. However, system identification is often carried out under limited
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data resources in daily life. In order to make full use of resources, we must investigate how to
select appropriate data to achieve the best identification efficiency under limited resources. It
is exactly a kind of resource allocation problem, that is, how to choose the data type and data
amount to achieve the best identification efficiency under limited resources.

There are two types of data in daily life: Accurate and quantized data. Quantized data
are often seen in medical, engineering and communication fields[10–12], which refers to that it is
known that data belongs to a certain or some sets instead of its accurate value[13]. Although
quantized data has less information than its accurate value, it is undeniable that quantized data
has incomparable advantages in reducing the cost of information transmission and storage. This
urges us to investigate how to make quantized data contain as much information as possible,
which is also an important part of optimal resource allocation under limited resources.

It is worth noting that the threshold design of quantized data has an important impact on
the amount of information contained in the data. For example, data compression ratio can
be improved by designing a quantized table in the data compression[14–16]. Specifically, the
image compression method proposed by [15] based on adaptive quantized parameters has less
loss of image quality and better compression effect, compared with the original JPEG image
compression method. The research in [13] has also shown that different quantized intervals
contribute differently to the error reduction of the identification algorithm, and even the whole
quantized interval has no effect on identification effect for some extreme cases. Therefore,
proper threshold designs can make the same type of data contain more information, which
helps to achieve the best application effect under the same amount of data. According to the
above, this paper considers the optimal threshold selection from the perspective of quantized
identification, and then answers how to establish the optimal resource allocation method under
limited identification resources.

1.2 Related Works

As known, whether exploring optimal threshold selection problems or optimal resource
allocation problems of quantized identification, the basis is to realize the parameter identi-
fication based on quantized data. The existing identification methods based on quantized
data can be roughly divided into two categories. One is the off-line quantized identification
methods, which contain empirical measure (EM) method[10, 17, 18], expectation maximization
algorithm[19, 20], maximum likelihood method[21], variational bayesian method[22] and sup-
port vector machine[23], etc. The other is the online quantized identification methods, such
as recursive projection algorithm[24, 25], stochastic approximation algorithm with extended
truncation[26, 27], stochastic gradient algorithm[28], least mean square algorithm[29], Quasi-
Newton projection algorithm[30, 31], and so on. All of the above quantized identification methods
focus on how to achieve parameter identification under given quantized data, but do not concern
with what kind of quantized data could realize a better convergence properties of quantized
identification under limited resource.

Actually, there are a few studies involving to select which kinds of quantized data (i.e.,
threshold selection of quantized data) can achieve better convergence properties of quantized
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identification, including [32] and [33]. To be specific, in order to describe the influence of data
type and amount on quantized identification algorithm, [32] introduced the concept of space
complexity (i.e., the number of thresholds determining the types of data) and established the
basic property of space complexity, that is, the minimum reachable identification error decreases
with the increase of space complexity. However, with the increase of space complexity, the cost
of resources required for data transmission and storage also increases. In order to balance space
complexity and data transmission cost, [32] explored the optimal threshold selection theory
based on the quasi-convex combination estimator based on EM algorithm in [17]. That is, how
to design the thresholds to achieve the best identification effect under the same data type and
transmission. On this basis, [32] established two kinds of optimal resource allocation criteria
for quantized identification. However, due to the limitation of EM algorithm theory, the above
threshold selection and resource allocation theory could only be applied to the case of periodic
input. Then, [33] constructed a recursive projection algorithm with the time-varying threshold
design, gave the upper bound of the estimation error covariance under the weak persisting exci-
tation condition, and established a threshold selection scheme based on the upper bound. [33] is
an effective attempt to explore the asymptotic optimal online quantized identification algorithm
and optimal threshold selection theory.

Starting from the online quantized identification in [33], this paper explores the optimal
threshold design problem in quantized identification under the fixed threshold and time-varying
threshold, and studies the resource allocation method in quantized identification on this basis,
so as to answer how to balance the amount and type of data to achieve the best identification
efficiency of quantized identification under limited resources.

1.3 Contributions

Lightened by [32], this paper investigates the optimal threshold selection and optimal re-
source allocation problems from the perspective of online quantized identification. The main
contributions of this paper is summarized as follows:

• First, the asymptotic optimality of the first-order IBID algorithm (i.e., information based
identification algorithm) proposed by [31] is established under more general signal con-
ditions. To be specific, the optimal convergence rate and asymptotic efficiency of the
algorithm are proved under weak persisting excitation condition, which lays a theoretical
foundation for optimal threshold selection and resource allocation. Compared with [17],
the IBID algorithm is appropriate for non-periodic signals.

• This paper designs the optimal selection methods of fixed thresholds and adaptive thresh-
olds based on the principle of minimizing the minimum reachable identification error (i.e.,
maximizing the identification efficiency), respectively. For this purpose, the influence of
the time and space complexity to the identification efficiency are analyzed by taking the
norm of Cramér-Rao (CR) lower bound as the metric index. Moreover, this paper not only
studies fixed threshold case but also provides the theoretical support of threshold selec-
tion by asymptotically optimal algorithm, while [33] designed the adaptive quantization
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thresholds only by the upper bound of mean square estimation error.

• In addition, based on the principle of minimizing the minimum reachable identification er-
ror under limited resources, this paper establishes the optimal resource allocation methods
under fixed thresholds and adaptive thresholds, respectively. Compared with [32], this pa-
per establishes the optimal threshold selection methods and resource allocation methods
of quantized identification under the more general condition of non-periodic signals.

The rest of this paper is organized as follows. Section 2 describes the problem to be solved.
Section 3 demonstrates the identification algorithm and its optimality. Section 4 analyses the
influence of time and space complexity to identification efficiency. Section 5 constructs the
threshold selection methods for binary sensors under fixed and adaptive threshold cases. Sec-
tion 6 gives the optimal resource allocation methods. Section 7 gives some concluding remarks
and related future works.

Notations In this paper, Z and Z+ are the set of integers and positive integers, respectively.
R

n and R
n×n are the set of n-dimensional real vectors and n × n dimensional real matrices,

respectively. In is an n-dimension identity matrix. ‖ · ‖ is the Euclidean norm, i.e., ‖x‖ =
(∑n

i=1 x2
i

) 1
2 for the vector x ∈ R

n and ‖A‖ =
(
λmax(AAT)

) 1
2 for the matrix A ∈ R

n×n. For
matrices Ak and Bk, denote Ak = O

(
1
k

)
as ‖Ak‖ = O

(
1
k

)
and Ak = o

(
1
k

)
as ‖Ak‖ = o

(
1
k

)
.

The function I{·} denotes the indicator function, whose value is 1 if its argument (a formula)
is true, and 0, otherwise.

2 Problem Formulation

2.1 Observation Model

Consider the following dynamic linear system

yk = φT
k θ + dk, k = 1, 2, · · · , (1)

where k is the time index and φk ∈ R, θ ∈ R, and dk ∈ R are the input, unknown but constant
parameter vector, and noise at time k, respectively. The system output yk only can be measured
by a sensor of m thresholds −∞ < C1 < C2 < · · · < Cm < ∞. The sensor can be represented
by a set of m indicator function, which is given by

qk = Q(yk) =
m∑

i=0

iI{Ci<yk≤Ci+1} =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if yk ≤ C1;

1, if C1 < yk ≤ C2;
...

...

m, if yk > Cm,

(2)

where C0 = −∞ and Cm+1 = ∞.

2.2 Assumptions

In order to proceed our analysis, we introduce some assumptions concerning the prior in-
formation of the unknown parameter, the inputs and the noises.
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Assumption 2.1 The prior information on the unknown parameter θ is that θ ∈ Ω ⊂ R

with Ω being a bounded and closed set. And denote θ = supη∈Ω ‖η‖.
Assumption 2.2 The input sequence {φk} is supposed to be weak persistent exciting,

i.e.,

lim inf
k→∞

1
k

k∑

l=1

φlφ
T
l > 0 (3)

and supk ‖φk‖ ≤ φ < ∞.

Assumption 2.3 Suppose that the noise sequence {dk} is a sequence of independent
and identically normally distributed variables following N(0, σ2). The distribution and density
functions of d1 are denoted as F (·) and f(·), respectively.

Remark 2.4 Actually, the median μ of the noise could be estimated similarly to [25]
when μ �= 0. Therefore, without loss of generality, we assume that μ = 0 throughout the
paper. Assumption 2.1 is common in quantized identification such as [24, 25, 33], which is
used to guarantee the boundness of the estimate and good convergence effect in the initial
iterative process of the algorithm. Assumption 2.2 is used to keep the identifiability of parameter
estimation such as [1, 33], which is weaker than persisting excitation in [24, 25].

This paper discusses threshold selection and resource allocation problems of quantized iden-
tification. To solve these, we first answer how to achieve the best efficiency of quantized identifi-
cation under same data resources. In other words, we will construct the asymptotically optimal
online algorithm under more general excitation conditions in the following section.

3 Identification Algorithm and Its Optimality

This section would summarize and expand the key results that support the analysis of
the optimal threshold selection problem, namely the convergence and optimality theory of the
first-order IBID algorithm proposed by [31].

At first, for simplicity of description, denote

Fi,k = F
(
Ci − φT

k θ
)
, fi,k = f(Ci − φT

k θ), (4)

and their estimates based on θ̂k−1 as

F̂i,k = F (Ci − φT
k θ̂k−1) and f̂i,k = f(Ci − φT

k θ̂k−1), (5)

respectively, for i = 0, 1, · · · , m + 1. Correspondingly, denote

Hi,k = Fi,k − Fi−1,k and hi,k = fi,k − fi−1,k, (6)

and their estimates as

Ĥi,k = F̂i,k − F̂i−1,k, ĥi,k = f̂i,k − f̂i−1,k, (7)

respectively, for i = 1, · · · , m + 1.
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Then, the first order form of the asymptotically effective identification algorithm under
multi-threshold quantized observations constructed in [31] is given, that is, the first-order IBID
algorithm shown in Algorithm 1.

Algorithm 1 First-order IBID algorithm

Beginning with an initial values θ̂0 ∈ Ω and a positive definitive matrix P̂0, the algorithm is
recursively defined at any k ≥ 0 as follows:

1: Update of the adaptive weight coefficients:

α̂i,k = − ĥi,k

Ĥi,k

and β̂k =
m+1∑

i=1

ĥ2
i,k

Ĥi,k

, (8)

where ĥi,k and Ĥi,k are defined as (7).
2: Weighted conversion of the quantized observations:

sk =
m+1∑

i=1

α̂i,kI{Ci−1<yk≤Ci}. (9)

3: Estimation:

θ̂k = ΠΩ

(
θ̂k−1 + âkP̂k−1φks̃k

)
, (10)

s̃k = sk −
m+1∑

i=1

α̂i,kĤi,k, (11)

âk =
1

1 + β̂kφT
k P̂k−1φk

, (12)

P̂k = P̂k−1 − âkβ̂kP̂k−1φ
T
k φkP̂k−1, (13)

where ΠΩ(·) is the projection mapping defined as ΠΩ(x) = argminz∈Ω ‖x − z‖, ∀x ∈ R
n.

Next, we will establish the convergence and asymptotic efficiency of the 1-order IBID algo-
rithm under more general condition than that in [31].

Theorem 3.1 If Assumptions 2.1–2.3 hold, then the 1-order IBID algorithm is convergent
in both mean square and almost sure sense. Besides, its mean square convergence rate is

Eθ̃2
k = O

(
1
k

)
,

where θ̃k = θ̂k − θ is the estimation error.

Proof The proof of this theorem is supplied in the Appendix.
Then, the CR lower bound of quantized systems (1)–(2) is given as follows.

Proposition 3.2 (see [31]) For the system (1) with quantized observations (2), the CR
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lower bound is

Δk =

(
k∑

l=1

ρlφlφ
T
l

)−1

, (14)

where ρl =
∑m+1

i=1

h2
i,l

Hi,l
with hi,l and Hi,l defined in (6) for i = 1, · · · , m + 1.

The following theorem shows the asymptotic efficiency of the first-order IBID algorithm.

Theorem 3.3 If Assumptions 2.1–2.3 hold, then the 1-order IBID algorithm is asymp-
totically efficient, i.e.,

lim
k→∞

k
(

Eθ̃kθ̃T
k − Δk

)
= 0.

Moreover, P̂k defined in (13) has the following property,

lim
k→∞

k(EP̂k − Δk) = 0.

Based on Theorem 3.1, the proof of Theorem 3.3 is similar to [31, Theorems 4.2 and 4.3],
and hence omit here.

Remark 3.4 In the optimal threshold selection and resource allocation problems, the CR
lower bound is used to design the measure criterion. Theorem 3.3 shows that P̂k in the 1-order
IBID algorithm can asymptotically approximate the CR lower bound. It means that we can
utilize P̂k as the measure criterion to some extent, instead of calculating the CR lower bound
by parameter estimates, which is more simple and intuitive.

4 Time and Space Complexity

This section focuses on the characteristics of time and space complexity in order to balance
the role of both in subsequent resource allocation problems. Actually, the quantizer threshold
number m is regarded as a measure of space complexity, while the data amount K is regarded as
a measure of time complexity[32]. It is well-known that both of them influence the identification
efficiency (i.e., the minimum reachable identification error). The CR lower bound, the greatest
lower bound of the covariance of estimation error, is often used to measure the identification
efficiency in parameter estimation. The smaller the CR lower bound, the higher the identi-
fication efficiency (i.e., the smaller the minimum reachable identification error). Moreover, it
can also be used to analyze the influence of the time and space complexity to the identification
efficiency.

When involving communication data transmission, the communication resources for iden-
tification are usually limited in order to normally carry out the follow-up control or decision-
making. For convenience, the bandwidth resource R of a communication channel is used as
the amount of available identification resources in a real-time signal processing. The resource
for transmitting K data measured by a quantizer with m thresholds is K log2(m + 1). For the
available resource R of quantized identification, there are usually two ways to allocate it. The
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first way is to allocate it on space complexity (i.e., to increase the number of thresholds m),
and the second way is on time complexity (i.e., to increase the amount of data K). The overall
goal of two allocation schemes is to achieve the highest identification efficiency for given iden-
tification resources. In this section, we would discuss the effect of space and time complexity
on the identification efficiency.

Firstly, we give an index to measure the influence of time K (data amount {φk}K
k=1) and

space m (threshold number) on the identification efficiency as follows:

η(K, m, θ) = ‖ΔK(m, θ)‖, (15)

which is based on the CR lower bound. The smaller the index is, the higher the identification
efficiency is.

The following theorem states that the quantized identification efficiency improves (i.e., the
minimum reachable identification error reduces) with the increase of the data amount.

Theorem 4.1 Under the same thresholds {Ci}m
i=1, for K1 ≤ K2, choose the input sub-

sequence {φk}K1
k=1 and {φk}K2

k=1 in the input sequence {φk}K
k=1. Then, the measure index

η(K, m, θ) defined in (15) has the following property

η(K2, m, θ) ≤ η(K1, m, θ). (16)

Proof From the definition of hi,l and Hi,l in (6), we have
∑m+1

i=1

h2
i,l

Hi,l
> 0 and

K2∑

l=K1+1

m+1∑

i=1

h2
i,l

Hi,l
φlφ

T
l ≥ 0.

Then, by (14), we get

ΔK2(m, θ) =

(

Δ−1
K1

(m, θ) +
K2∑

l=K1+1

m+1∑

i=1

h2
i,l

Hi,l
φlφ

T
l

)−1

≤ ΔK1(m, θ),

which together with (15) yields (16).
To intuitively demonstrate the monotony of space complexity, we introduce a definition

about the way of threshold selection.

Definition 4.2 (see [17]) Let Cm1 = {C1, · · · , Cm1} and Cm2 = {C∗
1 , · · · , C∗

m2
} be two

placements of sensors, where m1 and m2 are two positive integers satisfying m1 < m2, C1 <

C2 < · · · < Cm1 and C∗
1 < C∗

2 < · · · < C∗
m2

. Then, we say that Cm2 is a refinement of Cm1 if
{C1, · · · , Cm1} ⊆ {C∗

1 , · · · , C∗
m2

} holds.

The following theorem states that quantized identification efficiency improves as the number
of thresholds increases.

Theorem 4.3 For the input sequence {φk}K
k=1, assume that Cm1 and Cm2 are two place-

ments of sensor such that Cm2 is a refinement Cm1 . Then, the measure index η(K, m, θ) defined
in (15) satisfies

η(K, m2, θ) ≤ η(K, m1, θ). (17)
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Proof Actually, we just need to prove that η(K, m2, θ) ≤ η(K, m1, θ) when m2 = m1 + 1.
It is because that we get η(K, m2, θ) ≤ η(K, m1, θ) by recursion based on η(K, m + 1, θ) ≤
η(K, m, θ) (m = m1, · · · , m2 − 1), which implies (17).

Suppose the one additional threshold added to Cm1 = {C1, · · · , Cm1} as C, which is between
Ci and Ci+1. The new placement of sensors is defined as Cm2 .

Define the corresponding coefficients
∑m+1

i=1

h2
i,l

Hi,l
of η(K, m2, θ) and η(K, m1, θ) as ρm1

l and
ρm2

l , respectively. From the definitions of hi,l and Hi,l in (6), we get

ρm1
l − ρm2

l

=
m1+1∑

j=1

h2
j,l

Hj,l
− ρm2

l

=
(fi+1,l − fi,l)

2

Fi+1,l − Fi,l
−
(
fi+1,l − f(C − φT

l θ)
)2

Fi+1,l − F (C − φT
l θ)

−
(
f(C − φT

l θ) − fi,l

)2

F (C − φT
l θ) − Fi,l

= −
(
(fi+1,l − fi,l)(Fi,l − F (C − φT

l θ)) − (fi,l − f(C − φT
l θ))(Fi+1,l − Fi,l)

)2

(Fi+1,l − Fi,l)(F (C − φT
l θ) − Fi)(Fi+1,l − F (C − φT

l θ))
≤ 0, (18)

where fi,l and Fi,l are defined in (4). Then by (14), we have

ΔK(m2, θ) =

(
K∑

l=1

ρm2
l φlφ

T
l

)−1

≤
(

K∑

l=1

ρm1
l φlφ

T
l

)−1

= ΔK(m1, θ),

which together with (15) directly yields (17).
According to Theorems 4.1 and 4.3, the growth of both data amounts and threshold num-

bers can improve the identification efficiency of quantized identification. However, both two
contribute the increase of required identification resources, which mean more costs. Therefore,
it is not advisable to blindly increase identification resources. We must investigate the balance
of time complexity (data amount) and space complexity (threshold number) to achieve optimal
resource utilization of quantized identification. At first, we focus on how to design thresholds
to achieve the highest identification efficiency under the same time-space complexity in the
following section.

5 Threshold Selection for Binary Sensors

This section takes the binary sensor as an example to investigate threshold selection in
quantized identification. Actually, an interval (Ci−1, Ci] of the output range can offer useful
information for quantized identification just when hi,l �= 0[32]. From the definition of hi,l in (6),
we learn that the contribution of a sensor interval to error reduction depends on the actual
parameter θ, the distribution function F (·) of noises, the threshold C and the inputs {φk}. In
this section, we mainly focus on the influence of threshold on the identification efficiency. An
example is given below to show that thresholds have an important influence on error reduction.

Example 5.1 Consider the 1-order system (1), where the unknown parameter θ = 5,
the inputs {φk}100

k=1 are randomly chosen in the interval [−2, 4], and the noises follow normal
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distribution N(0, 102) with zero mean and the variance σ2 = 102. Take the index defined in (15)
with the threshold C as

ηC(100, 1, θ) =

(
100∑

l=1

f2(C − φlθ)
(1 − F (C − φlθ)) F (C − φlθ)

φ2
l

)−1

.

Take C as −30, 20, 40 and 60, respectively. Then,

η−30(100, 1, 5) = 28.3313; η20(100, 1, 5) = 0.4287;

η40(100, 1, 5) = 3.8130; η60(100, 1, 5) = 1451.8731.

These indicate that the measure index ηC(N, m, θ) of identification efficiency is significantly
impacted by the values of the threshold.

Remark 5.2 The significance of investigating the threshold selection problem lies in that
proper threshold selection can make the quantized data contain more information of the original
data and reduce the required data amount for an identification task. Threshold values greatly
affect the identification efficiency of quantized identification, and a proper threshold selection
can greatly improve the identification efficiency. Actually, threshold selection is often used in
communication fields, that is, we make communication code contain more information through
the design of appropriate thresholds (coding protocol). In communication coding, the coding
protocol is designed in advance, in which case the thresholds are designable.

5.1 Optimal Design of Fixed Thresholds

This section discusses how to select thresholds to achieve the highest identification efficiency
for binary sensors with fixed thresholds. To be specific, we would like to investigate the problem
of the threshold selection of fixed thresholds, aiming at the prior information θ ∈ Ω, the
input sequence {φk}K

k=1 satisfying persisting excitation (i.e., Assumption 2.2) and normally
distributed noise with mean 0 and variance σ2 (i.e., Assumption 2.3).

When the threshold of binary sensor is C, it can be seen that

h1,k = f(C − φT
k θ); h2,k = −f(C − φT

k θ);

H1,k = F (C − φT
k θ); H2,k = 1 − F (C − φT

k θ).

And then the index defined in (15) can be written as

ηC(K, 1, θ) =

∥
∥
∥
∥
∥∥

(
K∑

l=1

f2(C − φT
l θ)

(
1 − F (C − φT

l θ)
)
F (C − φT

l θ)
φlφ

T
l

)−1
∥
∥
∥
∥
∥∥

.

Denote

G(x) =
f2(x)

(1 − F (x)) F (x)
. (19)

Then, the index defined in (15) can be transformed into

ηC(K, 1, θ) =

∥
∥∥
∥
∥
∥

(
K∑

l=1

G(C − φT
l θ)φlφ

T
l

)−1
∥
∥∥
∥
∥
∥

. (20)
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Since the parameter θ is unknown and only the prior parameter information θ ∈ Ω can
be learned, the selection criterion of optimal thresholds is established based on minimizing
the minimum reachable identification error (i.e., maximizing identification efficiency) of the
worst case in the prior parameter range. Specifically, for the input sequence {φk}K

k=1 following
persisting excitations, the optimal fixed threshold selection method is as follows

η∗(K, 1) = inf
C

sup
θ∈Ω

ηC(K, 1, θ). (21)

It is noted that we take the worst case of the prior parameter information in the optimal
threshold selection method when the threshold is fixed. In some cases, the performance of
the optimal threshold given by this method may be not good because the prior information
on parameters is poor. It is noted that the optimal identification algorithm can provide more
accurate information about the unknown parameters, which implies that the identification
efficiency can be further improved based on it. Next, we will utilize the estimate given by the
optimal identification algorithm, i.e., the IBID algorithm, to adaptively design the time-varying
threshold Ck to achieve a higher identification efficiency.

5.2 Design of Adaptive Threshold

This part discusses how to select thresholds to realize the highest identification efficiency
for binary sensors with time-varying and designable thresholds. Specifically, we would like to
study the problem of the threshold selection on time-varying thresholds, aiming at the prior
information θ ∈ Ω, the input sequence {φk}K

k=1 satisfying persisting excitation condition (i.e.,
Assumption 2.2) and normally distributed noise with mean 0 and variance σ2 (i.e., Assump-
tion 2.3).

When the time-varying threshold of binary sensor is Ck, it can be seen that

h1,k = f(Ck − φT
k θ); h2,k = −f(Ck − φT

k θ);

H1,k = F (Ck − φT
k θ); H2,k = 1 − F (Ck − φT

k θ).

Then, the measure index defined in (15) is as follows:

ηC1:K (K, 1, θ) =

∥
∥
∥
∥∥
∥

(
K∑

l=1

f2(Cl − φT
l θ)

(
1 − F (Cl − φT

l θ)
)
F (Cl − φT

l θ)
φlφ

T
l

)−1
∥
∥
∥
∥∥
∥

=

∥
∥
∥
∥
∥∥

(
K∑

l=1

G(Cl − φT
l θ)φlφ

T
l

)−1
∥
∥
∥
∥
∥∥

, (22)

where C1:K = {C1, C2, · · · , CK}.
Then, based on the principle of minimizing the minimum reachable identification error

(i.e., maximizing the identification efficiency), the selection method of optimal time-varying
thresholds is established as

η∗(K, 1, θ) = inf
C1:K

∥
∥∥
∥
∥
∥

(
K∑

l=1

G(Cl − φT
l θ)φlφ

T
l

)−1
∥
∥∥
∥
∥
∥

. (23)
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From φlφ
T
l ≥ 0 and Weyl’s inequality, the selection criterion in (23) can be transformed into

η∗(K, 1, θ) =

∥
∥
∥
∥
∥∥

(
K∑

l=1

sup
Cl

G(Cl − φT
l θ)φlφ

T
l

)−1
∥
∥
∥
∥
∥∥

. (24)

In order to further analyze the selection of optimal time-varying threshold method, we
introduce the following lemma.

Lemma 5.3 (see [17]) G(x) defined in (19) has the following properties, G′(x) = dG(x)
x <

0 for x > 0 and G′(x) > 0 for x < 0.

Then, based on Lemma 5.3, the maximum of G(Cl − φT
l θ) is got when Cl = φT

l θ, i.e.,

sup
Cl

G(Cl − φT
l θ) = G(0) =

(f(0))2

F (0) (1 − F (0))
=

2
πσ2

,

which together with (24) gives

η∗(K, 1, θ) =

∥∥
∥
∥
∥
∥

(
K∑

l=1

2
πσ2

φlφ
T
l

)−1
∥∥
∥
∥
∥
∥

=
πσ2

2

∥∥
∥
∥
∥
∥

(
K∑

l=1

φlφ
T
l

)−1
∥∥
∥
∥
∥
∥

. (25)

However, the optimal time-varying threshold Ck = φT
k θ is unknown due to containing the

unknown parameter. Hence, we use its estimate θ̂k−1 to design the time-varying threshold Ck

instead of the unknown parameter. So the time-varying threshold Ck is adaptively designed as

Ck = φT
k θ̂k−1, (26)

where θ̂k−1 is given by the 1-order IBID algorithm.

Remark 5.4 From Ck ∈ Fk−1 = σ(d1, · · · , dk−1), the adaptive weight α̂i,k and β̂k in
the IBID algorithm (8)–(13) still belong to Fk−1. Therefore, the convergence and asymptotic
efficiency of the IBID algorithm still hold (i.e., Theorems 3.1 and 3.3 hold) under the adaptive
threshold design. In other words, the IBID algorithm is an asymptotically optimal quantized
identification algorithm with the adaptive threshold (26), and it can be used to design the
time-varying thresholds.

Remark 5.5 Compared with [33], this paper provides complete theoretical support for
the optimal threshold selection method of time-varying thresholds, instead of utilizing the
upper bound of the estimation covariance to design the threshold. Furthermore, this paper
also presents the expression of adaptive thresholds. In addition, the design of the adaptive
threshold is given by the optimal identification algorithm, without designing additional adaptive
threshold iteration. So this design method can reduce the amount of computation and algorithm
complexity in contrast with [32].

Note that CR lower bound is σ2
(∑K

l=1 φlφ
T
l

)−1

under accurate measurements. Under the
design of adaptive threshold (26), the quantized identification efficiency can approximately
tend to (25). It means that the minimum reachable identification error under this adaptive
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threshold of binary sensor is only π/2 times the one under accurate measurement. Therefore,
the identification efficiency under binary-valued data can achieve the approximate performance
as the one with accurate data.

Next, an example is given to verify the validity of the optimal fixed threshold selection
method and the adaptive threshold selection method.

Example 5.6 Consider a first-order linear system (1), where the unknown parameter is
θ = 2 and the prior information is θ ∈ Ω = [1, 6]. The input sequence {φk}1000

k=1 is randomly
chosen in the range [3, 6]. The noises {dk} follow normal distribution N(0, 152). It can be
verified that the input and noises satisfy Assumptions 2.2 and 2.3, respectively.

Figure 1 shows the measure index ηC(1000, 1) = supθ∈Ω ηC(1000, 1, θ). Then, the optimal
fixed threshold is C = 17.20, and the corresponding the minimum reachable identification error
is η∗(1000, 1) = 0.0218.
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Figure 1 Optimal worst-case threshold selection for θ ∈ [1, 6] and dk ∼ N(0, 152)

Figure 2 demonstrates the convergence properties of the first-order IBID algorithm with
non-optimal fixed threshold, optimal fixed threshold and adaptive threshold, respectively. It
can be seen that the identification efficiency of the algorithm is significantly improved with the
optimal fixed threshold compared with the general non-optimal fixed threshold. Furthermore,
the identification efficiency under the adaptive threshold design is better than that under the
optimal fixed threshold design.
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Figure 2 Comparison of identification properties under non-optimal threshold C = −10,
optimal threshold C = 17.2 and adaptive threshold Ck = φk θ̂k−1
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6 Optimal Resource Allocation

This section focuses on the optimal resource allocation problem of quantized identification.
That is, in order to achieve the optimal identification efficiency under the given identification
resource R, how to balance the time and space complexity (i.e., the amount of data K and the
number of thresholds m). We will provide some concrete resource allocation methods for fixed
threshold and adaptive threshold cases, respectively.

Fixed threshold case: For the given identification resource R, input sequence {φk}K0
k=1

(K0 ≥ R) and prior information θ ∈ Ω, we take the minimizing the minimum reachable iden-
tification error (i.e., maximizing the identification efficiency) of the worst case in the prior
parameter range as the resource allocation criterion. Then, the minimum reachable identifica-
tion error of the worst case under the given resource is as follows:

ε(R) = min
m∈Z+

max
θ∈Ω

η(K, m, θ) s.t. K log2(m + 1) ≤ R.

Based on it, the optimal resource allocation method for the given resource R is

(K, m) = arg min
K log2(m+1)≤R

ε(R).

Consider the following two threshold selection methods to increase space complexity.
The first one is a structured threshold case, i.e., threshold sets are restricted to a pre-

specified category. For example, the threshold is selected according to dividing equally the
threshold value range [a, b]. When m = 1, the threshold is set as C1

1 = a+b
2 . When m = 2,

the thresholds are chosen as C1
2 = 2a+b

3 and C2
2 = a+2b

3 . Select the thresholds by analogy.
In this case, when the threshold selection range is given, the threshold selection is one-to-one
corresponding to the number of thresholds.

The second one is the non-structured threshold case. For a given number of thresholds m,
the threshold in Cm = {Cm

1 , · · · , Cm
m} can be selected within the preset threshold range C .

The general selection principle is to choose the thresholds and data amount that minimize the
identification error under limited resources. In this case, the minimum reachable identification
error and the optimal resource allocation method are

ε(R) = min
m∈Z+

min
Cm∈�C

max
θ∈Ω

η(K, m, θ) s.t. K log2(m + 1) ≤ R,

(K, m) = arg min
K log2(m+1)≤R

ε(R),

respectively. In this method, the threshold for m = 1 is selected as follows:

C = arg min
C∈�C

max
θ∈Ω

η(K, 1, θ). (27)

Adaptive threshold case: For the given identification resource R and input sequence
{φk}K0

k=1 (K0 ≥ R), we take the minimizing the minimum reachable identification error (i.e.,
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maximizing the identification efficiency) as the allocation criterion. Then, the minimum reach-
able identification error and the optimal resource allocation method are as follows:

ε(R) = min
m∈Z+

ηCm
1:K

(K, m, θ) s.t. K log2(m + 1) ≤ R,

(K, m) = arg min
K log2(m+1)≤R

ε(R),

where Cm
1:K = {Cm

i,k = F−1( i
m+1 ) + φT

k θ̂k−1, i = 1, · · · , m, k = 1, · · · , K}, F−1(·) is the inverse
function of the distributed function F (·) of noises and θ̂k−1 is given by the IBID algorithm.

Remark 6.1 The design idea of the adaptive thresholds is that choosing Cm
i,k (i = 1, 2, · · · ,

m) make F (Cm
i,k − φT

k θ) divide equally the distribution range [0, 1], which could make each
threshold interval contain more information on the unknown parameter. It is noticed that
the analytic expression of the adaptive threshold design Cm

i,k calculated by the above idea is
related to the unknown parameter. Therefore, we use the estimate given by the IBID algo-
rithm to design the adaptive threshold instead of the unknown parameter. To be specific, the
design method of the adaptive thresholds is that we can select Cm

i,k (i = 1, 2, · · · , m) to make
F (Cm

i,k − φT
k θ̂k−1) − F (Cm

i−1,k − φT
k θ̂k−1) = 1

m+1 , where Cm
0,k = −∞, Cm

m+1,k = ∞ and θ̂k−1

is given by the first-order IBID algorithm. In other words, the adaptive thresholds for the
multiple threshold case are Cm

i,k = F−1( i
m+1 ) + φT

k θ̂k−1 for i = 1, · · · , m. For example, when
m = 1, the adaptive threshold is designed as C1

1,k = F−1(1
2 ) + φT

k θ̂k−1 = φT
k θ̂k−1, which makes

F (C1
1,k − φT

k θ̂k−1) = 1
2 .

Example 6.2 For the model in Example 5.6 under a given resource R = 1000 bits, we
consider the optimal resource allocation problem in the following three cases, respectively.

1) Structured fixed threshold case. The threshold selection range is [−70, 30], and the
thresholds are selected according to dividing equally threshold value range. In other words,
the threshold is designed as C1

1 = −20 when m = 1. In this case, the resource occupied
by space complexity is log2(m + 1) = 1 bit, and the corresponding usable time complexity
is K ≤

⌊
R

log2(m+1)

⌋
= 1000. Then, increase the number of thresholds in sequence. So the

thresholds are chosen as C2
1 = − 110

3 and C2
2 = − 10

3 when m = 2. In this case, the resource
occupied by space complexity is log2(m + 1) = log2 3 bits, and the corresponding usable time
complexity is K ≤

⌊
R

log2(m+1)

⌋
= 630. Select the thresholds by analogy.

2) Unstructured fixed threshold case. Choose the thresholds by minimizing the iden-
tification error under limited resource. For instance, the threshold is chosen as (27) for m = 1.

3) Adaptive threshold case. This method adaptively designs the threshold based on the
estimates given by the IBID algorithm, i.e., Cm

i,k = F−1( 1
m+1 ) + φT

k θ̂k−1 for i = 1, · · · , m.
Figures 3–5 give the comparison of the minimum reachable identification error under dif-

ferent space complexity in the case of structured fixed threshold, unstructured fixed optimal
threshold and adaptive threshold, respectively. According to Figure 3, the optimal resource
allocation is achieved when the number of thresholds is m = 3 in the structured threshold case.
And Figures 4–5 show that the minimum identification error can be achieved when the number
of thresholds is m = 1 for both the unstructured fixed optimal threshold and the adaptive
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threshold cases. Further, comparing Figure 3 and Figures 4–5, we find that it can greatly re-
duce the identification error and improve the utilization rate of resources by using the optimal
fixed threshold and adaptive threshold in the threshold design of binary sensor.
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Figure 3 The minimum reachable identification error for the structured thresholds
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Figure 4 The minimum reachable identification error for the optimal fixed thresholds
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Figure 5 The minimum reachable identification error for the adaptive thresholds

7 Concluding Remarks

This paper investigates the optimal threshold selection problem of quantized identification
under aperiodic signals, and answers how to realize quantized identification with higher resource
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utilization. First, this paper establishes the optimal convergence rate and asymptotic efficiency
of the first-order IBID algorithm under general persisting excitation condition. Then, taking the
norm of the CR lower bound as the measure index, the influence of space and time complexity
on the identification efficiency are analyzed. On this basis, the optimal fixed threshold selection
method and adaptive threshold design method are designed to answer how to achieve the
highest quantized identification efficiency under the same time-space complexity. In addition,
based on the principle of minimizing the minimum reachable identification error under given
resources, this paper establishes the optimal resource allocation methods for the fixed threshold
and adaptive threshold cases, respectively. And then, this paper shows how to balance the time-
space complexity to achieve the best resource utilization.

There are still lots of interesting problems for further research. For example, we can consider
the optimal quantized identification algorithm under more general systems and noise conditions,
and then based on it we can also consider optimal threshold selection and resource allocation
problems of online quantized identification.
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Appendix Proof of Theorem 3.1

Based on Lemma 5 and [31, Proposition 2], we have

α̂i+1,k > α̂i,k, α̂m+1,k − α̂1,k ≥ α̂ > 0, (A.1)

|α̂i,k| ≤ α̂ ≤ ∞, (A.2)

β̂ = inf
k

β̂k > 0, β̂ = sup
k

β̂k ≤ ∞. (A.3)

From (13), we have

P̂−1
k = P̂−1

k−1 + β̂kφ2
k = P̂−1

0 +
k∑

l=1

β̂lφ
2
l .

Then, by Assumption 2.2 and (A.3), we have

P̂k = O

(
1
k

)
, P̂−1

k = O (k) . (A.4)

By the definition of Hi,k and Ĥi,k in (6) and (7) and the differential mean value theorem, there
exists θ̌i,k−1 with φk θ̌i,k−1 in the interval between φT

k θ and φT
k θ̂k−1 such that

E[s̃k|Fk−1] =
m+1∑

i=1

α̂i,k

(
Hi,k − Ĥi,k

)

=
m∑

i=1

(α̂i+1,k − α̂i,k)
(
F̂i,k − Fi,k

)

= −
m∑

i=1

(α̂i+1,k − α̂i,k) f(Ci − φT
k θ̌i,k−1)φT

k θ̃k−1, (A.5)

where Fk−1 = σ{d1, · · · , dk−1}. Define f̌i,k � f(Ci − φT
k ξi,k). Then

E[s̃k|Fk−1] = −
m∑

i=1

(α̂i+1,k − α̂i,k) f̌i,kφT
k θ̃k−1. (A.6)
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From (10) and [34, Lemma 2.1], we have

θ̃2
k ≤ θ̃2

k−1 + 2âkφkP̂k−1 θ̃k−1s̃k + â2
kφkP̂ 2

k−1φks̃2
k. (A.7)

By (A.2), (A.4)–(A.7) and Assumption 2.2, we get

Eθ̃2
k ≤ Eθ̃2

k−1 + 2EâkφkP̂k−1θ̃k−1s̃k + Eâ2
kφkP̂ 2

k−1φk s̃2
k

≤ Eθ̃2
k−1 + 2E

m+1∑

i=1

α̂i,k

(
Hi,k − Ĥi,k

)
âkP̂k−1φ

2
kθ̃2

k−1 + O

(
1
k2

)

≤ Eθ̃2
k−1 − 2E

m∑

i=1

(α̂i+1,k − α̂i,k) f̌i,kâkP̂k−1φ
2
kθ̃2

k−1 + O

(
1
k2

)

≤ Eθ̃2
k−1 − 2EλkβkakPk−1φ

2
k θ̃2

k−1 + O

(
1
k2

)
, (A.8)

where Pk is generated by (13) with βk =
∑m+1

i=1

h2
i,k

Hi,k
, ak =

(
1 + βkPk−1φ

2
k

)−1 and

λk =
∑m

i=1 (α̂i+1,k − α̂i,k) f̌i,kâkP̂k−1

βkakPk−1
. (A.9)

From the boundness of θ̂k, θ and φk, (A.1) and the continuity of f(x) and F (x), we learn that
λk is bounded, i.e.,

λ = inf
k

λk > 0, λ = sup
k

λk < ∞. (A.10)

Then, by the boundness of θ and φk and Assumption 2.3, we have

β = inf
k

βk > 0, β = sup
k

βk ≤ ∞, (A.11)

which together with P−1
k = P−1

0 +
∑k

l=1 βlφ
2
l and Assumption 2.2 yields

Pk = O

(
1
k

)
, P−1

k = O (k) . (A.12)

From (13), we get

k∑

l=1

alβlPl−1φ
2
l =

k∑

l=1

P−1
l − P−1

l−1

P−1
l

≤
k∑

l=1

∫ P−1
l

P−1
l−1

dx

x
= log P−1

k − log P−1
0 . (A.13)

Based on (A.12) and (A.13), we get

k∏

l=j+1

(
1 − 2λalβlPl−1φ

2
l

)
=e

∑k
l=j+1 log(1−2λalβlPl−1φ2

l )

∼e−2λ
∑k

l=j+1 alβlPl−1φ2
l
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≤e−2λ(log P−1
k −log P−1

j )

=

(
P−1

j

P−1
k

)2λ

=O

((
j

k

)2λ
)

. (A.14)

From (A.8), (A.10) and (A.14), we have

Eθ̃2
k ≤ (1 − 2λβkakPk−1φ

2
k

)
Eθ̃2

k−1 + O

(
1
k2

)

≤
k∏

l=1

(
1 − 2λalβlPl−1φ

2
l

)2
Eθ̃2

0 + O

⎛

⎝
k∑

l=1

k∏

j=l+1

(
1 − 2λajβjPj−1φ

2
j

) 1
l2

⎞

⎠

=O

(
1

k2λ

)
+ O

(
1

k2λ

k∑

l=1

1
l2−2λ

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

O

(
1
k

)
, if 2λ > 1,

O

(
log k

k

)
, if 2λ = 1,

O

(
1

k2λ

)
, if 2λ < 1.

(A.15)

Noticing that 2λ > 0, we derive that 1-order IBID algorithm is convergent in mean square
sense. By (A.6) and (A.7), we get E[θ̃2

k|Fk−1] ≤ θ̃2
k−1 + O

(
1
k2

)
, which together with [1, Lemma

1.2.2] yields that θ̃2
k converges almost surely to a bounded limit. Then, there is a subsequence

of θ̃k that converges almost surely to 0. Noticing Eθ̃2
k, we learn that θ̃k almost surely converges

to 0.
Similar to (A.7)–(A.15), we can get

Eθ̃2r
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

O

(
1
kr

)
, if 2λ > 1,

O

(
(log k)r

kr

)
, if 2λ = 1,

O

(
1

k2rλ

)
, if 2λ < 1,

for r = 2, 3 · · · . (A.16)

Next, we will prove Eθ̃2
k = O

(
1
k

)
by dividing the value of 2λ into different cases, based on

the high order moment convergence rate of the estimation error.
Case i 2λ > 1.
Then, by (A.15), we have Eθ̃2

k = O
(

1
k

)
.

Case ii 2λ ≤ 1.
Denote β(x) =

∑m+1
i=1

(f(Ci−x)−f(Ci−1−x))2

F (Ci−x)−F (Ci−1−x) . Then, βk = β(φT
k θ) and β̂k = β(φT

k θ̂k−1).
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From β̂k =
∑m

i=1 (α̂i+1,k − α̂i,k) f̂i,k, (A.1), (A.4), (A.9), (A.12), Assumption 2.3 and the
continuous differentiability of f(x) and F (x), we have

|1 − λk| =

∣
∣
∣
∣∣
1 −

∑m
i=1 (α̂i+1,k − α̂i,k) f̌i,kâkP̂k−1

βkakPk−1

∣
∣
∣
∣∣

≤
∣
∣
∣
∣
∣
1 −

∑m
i=1 (α̂i+1,k − α̂i,k) f̌i,k

∑m
i=1 (α̂i+1,k − α̂i,k) f̂i,k

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

m∑

i=1

(α̂i+1,k − α̂i,k)

(
f̌i,kâkP̂k−1

β̂kâkP̂k−1

− f̌i,kâkP̂k−1

βkakPk−1

)∣∣
∣
∣
∣

≤
∣
∣∣
∣
∣
∣

∑m
i=1 (α̂i+1,k − α̂i,k)

(
f̂i,k − f̌i,k

)

∑m
i=1 (α̂i+1,k − α̂i,k) f̂i,k

∣
∣∣
∣
∣
∣
+

∣
∣∣
∣
∣

m∑

i=1

(α̂i+1,k − α̂i,k) f̌i,kâkP̂k−1
βk − β̂k

β̂kβkP̂k−1

∣
∣∣
∣
∣

+

∣
∣
∣∣
∣

m∑

i=1

(α̂i+1,k − α̂i,k) f̌i,kâkP̂k−1

(
P̂−1

k−1 − P−1
k−1

βkP̂−1
k−1P

−1
k−1

)∣∣
∣∣
∣

≤
∣
∣
∣
∣
∣∣

∑m
i=1 (α̂i+1,k − α̂i,k) f

′
(ξi,k)φk

(
θ̂k−1 − θ̌k−1

)

∑m
i=1 (α̂i+1,k − α̂i,k) f̂i,k

∣
∣
∣
∣
∣∣

+

∣
∣
∣∣
∣
∣

m∑

i=1

(α̂i+1,k − α̂i,k) f̌i,kâk

β
′
(ζ̂k)φk

(
θ − θ̂k−1

)

β̂kβk

∣
∣
∣∣
∣
∣
+ O

(
1
k2

)

=O
(
|θ̃k|
)

+ O

(
1
k2

)
, (A.17)

where ξi,k and ζ̂i,k are between φT
k θ̂ and φT

k θ̌i,k−1 and between φT
k θ and φT

k θ̂k−1, respectively.
And f̌i,k and θ̌i,k−1 are defined as (A.6).

From Assumption 2.2 and (A.12), taking (A.17) into (A.8) gives

Eθ̃2
k ≤Eθ̃2

k−1 − 2EβkakPk−1φ
2
kθ̃2

k−1

+ 2E(1 − λk)βkakPk−1φ
2
k θ̃2

k−1 + O

(
1
k2

)

≤Eθ̃2
k−1 − 2EβkakPk−1φ

2
kθ̃2

k−1

+ O

(
1
k

)
· Eθ̃3

k−1 + O

(
1
k2

)

≤ (1 − 2βkakPk−1φ
2
k

)
Eθ̃2

k−1

+ O

(
1
k

)
·
√

Eθ̃2
k−1Eθ̃4

k−1 + O

(
1
k2

)
. (A.18)

Similar to (A.14), we can get

k∏

l=j+1

(
1 − 2alβlPl−1φ

2
l

)
=

(
P−1

j

P−1
k

)2

= O

((
j

k

)2
)

. (A.19)



226 WANG YING, et al.

Case ii-0 2λ = 1.
Then, from (A.15) and (A.16), there is ε ∈ (0, 1

3

)
such that Eθ̃2

k = O
(

1
k1−ε

)
and Eθ̃4

k =
O
(

1
k2−2ε

)
. Noticing (A.19), taking the above two into (A.18), which yields

Eθ̃2
k ≤ (1 − 2βkakPk−1φ

2
k

)
Eθ̃2

k−1 + O

(
1
k

)
·
√

O

(
1

k1−ε

)
· O
(

1
k2−2ε

)
+ O

(
1
k2

)

≤ (1 − 2βkakPk−1φ
2
k

)
Eθ̃2

k−1 + O

(
1
k2

)

≤
k∏

l=1

(
1 − 2alβlPl−1φ

2
l

)
Eθ̃2

0 + O

⎛

⎝
k∑

l=1

k∏

j=l+1

(
1 − ajβjPj−1φ

2
j

) 1
l2

⎞

⎠

= O

(
1
k2

)
+ O

(
1
k2

k∑

l=1

1
l2−2

)

= O

(
1
k

)
.

Case ii-1 2λ < 1 and 4λ > 1.
Then by (A.15) and (A.16), we have Eθ̃2

k = O
(

1
k2λ

)
and Eθ̃4

k = O
(

1
k4λ

)
. Noting (A.19),

substituting the above two into (A.18) which gives

Eθ̃2
k ≤ (1 − 2βkakPk−1φ

2
k

)
Eθ̃2

k−1 + O

(
1
k

)
·
√

O

(
1

k2λ

)
· O
(

1
k4λ

)
+ O

(
1
k2

)

≤ (1 − 2βkakPk−1φ
2
k

)
Eθ̃2

k−1 + O

(
1

k1+3λ

)
+ O

(
1
k2

)

≤
k∏

l=1

(
1 − 2alβlPl−1φ

2
l

)
Eθ̃2

0 + O

⎛

⎝
k∑

l=1

k∏

j=l+1

(
1 − 2ajβjPj−1φ

2
j

) 1
l1+3λ

⎞

⎠

+ O

⎛

⎝
k∑

l=1

k∏

j=l+1

(
1 − 2ajβjPj−1φ

2
j

) 1
l2

⎞

⎠

=O

(
1
k2

)
+ O

(
1
k2

k∑

l=1

1
l3λ−1

)

+ O

(
1
k2

k∑

l=1

1
l2−2

)

=O

(
1
k2

)
+ O

⎛

⎝ 1
k2

k3λ
∑

l=1

⎞

⎠+ O

(
1
k

)

=

⎧
⎪⎪⎨

⎪⎪⎩

O

(
1
k

)
, if 3λ ≥ 1,

O

(
1

k3λ

)
, if 3λ < 1.

Then, we have Eθ̃2
k = O

(
1
k

)
when 3λ ≥ 1. When 3λ < 1, taking Eθ̃2

k = O
(

1
k3λ

)
and Eθ̃4

k =
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O
(

1
k4λ

)
into (A.18) which gives

Eθ̃2
k ≤ (1 − 2βkakPk−1φ

2
k

)
Eθ̃2

k−1 + O

(
1
k

)
·
√

O

(
1

k3λ

)
· O
(

1
k4λ

)
+ O

(
1
k2

)

≤
k∏

l=1

(
1 − 2alβlPl−1φ

2
l

)
Eθ̃2

0 + O

⎛

⎝
k∑

l=1

k∏

j=l+1

(
1 − ajβjPj−1φ

2
j

) 1
l1+7λ/2

⎞

⎠

+ O

⎛

⎝
k∑

l=1

k∏

j=l+1

(
1 − ajβjPj−1φ

2
j

) 1
l2

⎞

⎠

=O

(
1
k2

)
+ O

(
1

k7λ/2

)
+ O

(
1
k

)

=

⎧
⎪⎪⎨

⎪⎪⎩

O

(
1
k

)
, if 7λ/2 ≥ 1,

O

(
1

k7λ/2

)
, if 7λ/2 < 1.

So, we have Eθ̃2
k = O

(
1
k

)
when 7λ/2 ≥ 1. When 7λ/2 < 1, taking Eθ̃2

k = O
(

1
k7λ/2

)
and

Eθ̃4
k = O

(
1

k4λ

)
into (A.18) and repeating the above process for p1 times, we have

Eθ̃2
k =

⎧
⎪⎪⎨

⎪⎪⎩

O

(
1
k

)
, if (4 − 2−p1)λ ≥ 1,

O
(
k−(4−2−p1)λ

)
, if (4 − 2−p1)λ < 1.

From 4λ > 1, there is p1 such that (4 − 2−p1)λ ≥ 1.
Hence, we have Eθ̃2

k = O
(

1
k

)
.

Case ii-2 4λ ≤ 1 and 6λ > 1.
By (A.16), we have Eθ̃4

k = O
(

1
k4λ

)
and Eθ̃6

k = O
(

1
k6λ

)
. Moreover, from Case ii-1, we have

Eθ̃2
k = O

(
k−(4−2−p1)λ

)
. (A.20)

By (A.7) and (A.17), similar to (A.8), we have

Eθ̃4
k ≤ Eθ̃4

k−1 + 4EâkP̂k−1φkθ̃3
k−1s̃k + O

(
1
k2

)
· Eθ̃2

k−1

≤ Eθ̃4
k−1 − 4EλkβkakPk−1φ

2
kθ̃4

k−1 + O

(
1
k2

)
· Eθ̃2

k−1

≤ (1 − 4βkakPk−1φ
2
k

)
Eθ̃4

k−1 + 4E(1 − λk)βkakPk−1φ
2
kθ̃4

k−1 + O

(
1
k2

)
· Eθ̃2

k−1

≤ (1 − 4βkakPk−1φ
2
k

)
Eθ̃4

k−1 + O

(
1
k

)
· Eθ̃5

k−1 + O

(
1
k2

)
· Eθ̃2

k−1

≤ (1 − 4βkakPk−1φ
2
k

)
Eθ̃4

k−1 + O

(
1
k

)
·
√

Eθ̃4
k−1 · Eθ̃6

k−1 + O

(
1
k2

)
· Eθ̃2

k−1. (A.21)
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Noticing 4λ ≤ 1 and 6λ > 1, taking Eθ̃4
k = O

(
1

k4λ

)
and Eθ̃6

k = O
(

1
k6λ

)
into (A.21) which

gives

Eθ̃4
k ≤ (1 − 4βkakPk−1φ

2
k

)
Eθ̃4

k−1 + O

(
1
k

)
·
√

O

(
1

k4λ

)
· O
(

1
k6λ

)
+ O

(
1

k2+2λ

)

≤ (1 − 4βkakPk−1φ
2
k

)
Eθ̃4

k−1 + O

(
1

k1+5λ

)

≤
k∏

l=1

(
1 − 4alβlPl−1φ

2
l

)
Eθ̃2

0 + O

⎛

⎝
k∑

l=1

k∏

j=l+1

(
1 − 4ajβjPj−1φ

2
j

) 1
l1+5λ

⎞

⎠

=O

(
1
k4

)
+ O

(
1
k4

k∑

l=1

1
l−3+5λ

)

=O

(
1

k5λ

)
.

Then, taking Eθ̃4
k = O

(
1

k5λ

)
and Eθ̃6

k = O
(

1
k6λ

)
into (A.21), which yields Eθ̃4

k = O
(

1
k11λ/2

)
,

and repeating the above process for p2 times, which gives

Eθ̃4
k = O

(
k−(6−2−p2)λ

)
. (A.22)

Substituting (A.20) and (A.22) into (A.18), which yields

Eθ̃2
k ≤ (1 − 2βkakPk−1φ

2
k

)
Eθ̃2

k−1 + O

(
1
k

)
·
√

O
(
k−(5−2−p1−p2 )λ

)
+ O

(
1
k2

)

≤ (1 − 2βkakPk−1φ
2
k

)
Eθ̃2

k−1 + O

(
1

k1+ν1

)
+ O

(
1
k2

)

≤
k∏

l=1

(
1 − 2alβlPl−1φ

2
l

)
Eθ̃2

0 + O

⎛

⎝
k∑

l=1

k∏

j=l+1

(
1 − 2ajβjPj−1φ

2
j

) 1
l1+ν1

⎞

⎠

+ O

⎛

⎝
k∑

l=1

k∏

j=l+1

(
1 − 2ajβjPj−1φ

2
j

) 1
l2

⎞

⎠

=O

(
1
k2

)
+ O

(
1
k2

k∑

l=1

1
lν1−1

)

+ O

(
1
k2

k∑

l=1

1
l2−2

)

=

⎧
⎪⎪⎨

⎪⎪⎩

O

(
1
k

)
, if ν1 ≥ 1,

O

(
1

kν1

)
, if ν1 < 1,

where ν1 =
(
5 − 2−(p1+1) − 2−(p2+1)

)
λ.

When ν1 ≥ 1, we have Eθ̃2
k = O

(
1
k

)
. Otherwise, taking Eθ̃2

k = O
(

1
kν1

)
and (A.22) into
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(A.18) and computing Eθ̃2
k, then repeating the above process for p3 times, we can get

Eθ̃2
k =

⎧
⎪⎪⎨

⎪⎪⎩

O

(
1
k

)
, if νp3 ≥ 1,

O

(
1

kνp3

)
, if νp3 < 1,

where νp3 = (6 − 2−p2 − 2−p3 (2 + 2−p1 − 2−p2))λ. From 6λ > 1, there are p1, p2 and p3 such
that νp3 ≥ 1. Therefore, we have Eθ̃2

k = O
(

1
k

)
.

Case ii-r 2rλ ≤ 1 and 2(r + 1)λ > 1, ∀r ≥ 3. Similar to Case ii-1 and Case ii-2, we can
prove that there exist r(r + 1)/2 positive integers such that

(
2(r + 1) − εr(r+1)/2

(
2−p1 , 2−p2 , · · · , 2−pr(r+1)/2

))
λ ≥ 1,

where εr(r+1)/2 (2−p1 , 2−p2 , · · · , 2−pr(r+1)/2 ) is continuous function. So we have Eθ̃2
k = O

(
1
k

)
.

In summary, it can be seen that Eθ̃2
k = O

(
1
k

)
, which means the conclusion holds.


